Как устроен катализатор

Kатализатор представляет собой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализатора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение.

Химикам известно множество катализаторов — медь, хром, никель, палладий, родий. Но самой стойкой к воздействию сернистых соединений, которые образуются при сгорании содержащейся в бензине серы, оказалась благородная платина. На долю катализаторов приходится до 60% себестоимости устройства. Именно благодаря им происходят необходимые химические реакции – окисление монооксида углерода (СО) и несгоревших углеводородов (СН), а также сокращение количества окиси азота (NOx). В трехкомпонентном катализаторе платина и палладий вызывают окисление СО и СН, а родий ”борется” с NOx. Кстати, родий – субпродукт при получении платины – наиболее ценный в этой троице. Чтобы увеличить площадь контакта каталитического слоя с выхлопными газами, на поверхность сот наносится подложка толщиной 20-60 микрон с развитым микрорельефом. 

Как правило, носителем в катализаторе служит спецкерамика — монолит со множеством продольных сот-ячеек, на которые нанесена специальная шероховатая подложка. Это позволяет максимально увеличить эффективную площадь контакта каталитического покрытия с выхлопными газами — до величин около 20 тыс. м2. Причем вес благородных металлов, нанесенных на подложку на этой огромной площади, составляет всего 2-3 грамма!!! Керамика сделана достаточно огнеупорной – выдерживает температуру до 800-850 С. Но все равно при неисправности системы питания и длительной работе на переобогащенной рабочей смеси монолит может не выдержать и оплавиться — и тогда катализатор выйдет из строя. Именно поэтому так проблематично выглядит использование катализаторов с керамическим носителем на карбюраторных двигателях.

Впрочем, все шире в качестве носителей каталитического слоя используются тончайшие металлические соты. Это позволяет увеличить площадь рабочей поверхности, получить меньшее противодавление, ускорить разогрев катализатора до рабочей температуры и, главное, расширить температурный диапазон до 1000-1050 С. Соты катализатора, изображенного на рисунке, сделаны из тонкостенного (толщиной всего 0,04 мм, а не 0,15 мм, как у керамики) листа хромоалюминиевой стали, для лучшей адгезии каталитического слоя легированной редкоземельным металлом иттрием. Такой катализатор выдерживает пиковые температуры до 1300 С. Вот только цена на такие катализаторы уж очень кусается (стоимость как правило в полтора-два раза выше керамических), что и препядствует их широкому применениюю.

Обратная связь катализатора

Катализатор наиболее эффективен при определенном составе отработавших газов. Это значит, что нужно очень точно выдерживать состав горючей смеси возле так называемого стехиометрического отношения воздух/топливо, значение которого лежит в узких пределах 14,5 — 14,7. Если горючая смесь будет богаче, то упадет эффективность нейтрализации СО и СН, если беднее — NOX.

Поддерживать стехиометрический состав горючей смеси можно было только одним способом — управлять смесеобразованием, немедленно получая информацию о процессе сгорания, то есть, организовав обратную связь. Решение стало эпохальным.

В выпускной коллектор поместили специально разработанный кислородный датчик — так называемый лямбда-зонд (на Западе принято обозначать греческой буквой так называемый коэффициент избытка воздуха, то есть отношение стехиометрического состава смеси к текущему). Он вступает с раскаленными выхлопными газами в электрохимическую реакцию и выдает сигнал, уровень которого зависит от количества кислорода в выхлопе. Если кислорода осталось много — значит, смесь слишком бедная, если мало — богатая. А по результатам мгновенного анализа, которым занимается электроника, можно быстро корректировать состав смеси в ту или иную сторону. Если смесь бедная, то низковольтный сигнал дает команду на обогащение топливной смеси, и наоборот. Первый датчик (установленный до катализатора) необходим для коррекции состава горючей смеси, второй — контролирует степень очистки выхлопных газов катализатором. Дополнительный датчик кислорода является обязательным для соответствия нормам токсичности Евро-4 (хотя иногда и встречается на автомобилях с Евро-2,3)

Впервые трехкомпонентные катализаторы с обратной связью и кислородным датчиком появились на двигателях автомобилей Volvo в 1977 году. А сейчас ими оснащены все производимые автомобили.